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1 Introduction to Modal Clustering

Model-based clustering has been widely used for clustering heterogeneous populations. But standard
model based clsutering are often limited by the shape of the component densities. In this document,
we describe a mode associated clustering approach (Li et al 2007) applying new optimization techniques
to a nonparametric density estimator. A cluster is formed by those sample points that ascend to the
same local maximum (mode) of the density function. The path from a point to its associated mode
is e�ciently solved by an EM-style algorithm, namely, the Modal EM (MEM). This clustering method
shares the major advantages of mixture model based clustering. Moreover, it requires no model �tting
and ensures that every cluster corresponds to a bump of the density. A hierarchical clustering algorithm
is also developed by applying MEM recursively to kernel density estimators with increasing bandwidths.
The kernel density estimate becomes smoother with the increase of smoothing parameters and more
points tend to converge to the same mode. This suggests a hierachical clustering approach by choosing a
serial of increasing smoothing parameters, namely Hierarchical Modal Association Clustering(HMAC).

Historically cluster analysis techniques has been approached from either a fully parametric view
(the model based approach), e.g. mixture model based clustering, or a distribution free approach, e.g.
the linkage based clustering. While the parametric paradigm provides the inferential framework and
accounts for the sampling variability, it often lacks the �exibility to accommodate complex clusters and
are not scalable to high dimensional data. On the other hand, the distribution free approaches are
often fast and are capable of uncovering complex clusters by making use of di�erent distance measures,
but the inferential framework is distinctly missing. Modal clustering kneads the strengths of these two
seemingly di�erent approaches and to develop the new paradigm of nonparametric modal clustering
which can accommodate �exible subpopulation structures and are computationally fast and scalable to
high dimension, but retains the much desired natural inferential framework of parametric mixtures.

1.1 Parallel implementation of Modal Clustering

In this package we also develop a methodology for parallelization of modal clustering. We simply divide
the data (number of samples) into the number of parallel nodes speci�ed by the user. Ideally one would
want to use all available processors of one's machine or nodes in a cluster. The �rst step is to construct
modal clusters in parallel for each of these partitions and then merge the modes for higher bandwidths
to provide a full hierarchical cluster. One should note that even if the user has one processor available,
the user, partitioning large data into several partitions gives the advantage of �divide and conquer� by
signi�cantly reducing the computational burden. The parallel hierarchical modal association clustering
(pHMAC) algorithm provides the main function phmac in this package.

2 Use of functions

In this section we demonstrate the use of various functions in this package by applying it on a few
example datasets.
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First, consider the data in a dataset which resembles broken parts of a disc as given in following
�gure. We simulated this dataset with non-gaussian cluster structures. In fact each cluster is embedded
in a lower dimensional manifold (1-d curve).

> library(Modalclust)

> data(disc2d)

> plot(disc2d)
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One can use Modal clustering to cluster this dataset in the following three ways.

(i) Standard Modal clustering, i.e. without partition

(ii) Partitioning the dataset into npart partitions but running them sequentially in a single processor.

(iii) Partitioning the dataset into npart partitions but running them in parallel using npart processors.
This requires the use of package multicore

To cluster the disc2d using the non-partition mode (provided by default parameters in function
phmac)

> disc2d.hmac=phmac(disc2d,npart=1,parallel=F)

Performing initial Modal clustering..........

Building hierarchical Modal clusters at
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level 1 ...level 2 ...level 3 ...level 4 ...level 5 ...

level 6 ...level 7 ...level 8 ...level 9 ...level 10 ...

On the other hand one can use the parallel mode to cluster the same data. To partition the dataset
into 2 partitions and to run them sequentially in a single processor one can use

> disc2d.part=phmac(disc2d,npart=2,parallel=F)

To partition the dataset into 2 partitions and to run them in parallel in 2 processor one should use

> disc2d.phmac=phmac(disc2d,npart=2,parallel=T)

Partioning Data

Using parallel computing for performing initial Modal clustering

....................

Building membership from initial partitions

Building hierarchical Modal clusters at

level 1 ...level 2 ...level 3 ...level 4 ...level 5 ...

level 6 ...level 7 ...level 8 ...level 9 ...level 10 ...

> #npart can be made equal to the number of processors the computer has.

Note that the output of the parallel and the non-parallel version will be slightly di�erent, as the
random partitions of the data may provide overlapping clusters in the �rst stage. We are in the process
of developing methods to overcome this. But partitioning the data provides a huge numerical advantage
and it might be the most practical solution for clustering large number of observations.

The function phmac returns an object of class �hmac�. The summary of the output of such �hmac�
objects can be obtained by invoking the command

> summary(disc2d.phmac)

At levels 1 2 3 there are 4 3 2 clusters respectively

The modes of each level of clusters are

Modes at level 1

X1 X2

1 0.4991138 0.4112428

2 1.4563763 0.9594480

3 2.9901898 -0.8986367

4 4.4221819 -0.1448938

Modes at level 2

X1 X2

1 0.5184229 0.4269087

2 1.4780928 0.9519243

3 3.0214887 -0.8986338

Modes at level 3

X1 X2

1 1.502569 0.9424770

2 3.049604 -0.8960544
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2.1 Plotting methods and extracting clusters at speci�c level

There are several plotting function one can use to visualize the output of phmac function, i.e. an �hmac�
object.

To visualize the full hierarchical tree one can use the following command.

> plot.hmac(disc2d.hmac)

HMAC Dendrogram
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A clearer picture of the tree structure along with their original membership is visible in the following
example with 80 data points having 2 big clusters and 4 sub clusters. This hierarchical layer is visible
in the following graph. Note that one of the subclass was not separable as their modes merged the two
clusters.

> set.seed(20)

> mix4=data.frame(rbind(rmvnorm(20,rep(0,4)), rmvnorm(20,rep(2,4)),

+ rmvnorm(20,rep(10,4)),rmvnorm(20,rep(13,4))))

> mix4.hmac=phmac(mix4,npart=1)

Performing initial Modal clustering..........

Building hierarchical Modal clusters at

level 1 ...level 2 ...level 3 ...level 4 ...level 5 ...

level 6 ...level 7 ...level 8 ...level 9 ...level 10 ...

> plot(mix4.hmac)
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HMAC Dendrogram
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For validation, One can also verify the output of the clustering and hence the tree with groups
provided by user, using the userclus option, such as

> plot(mix4.hmac,userclus=rep(c(1,2,3,4),each=20))

HMAC Dendrogram
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 Node names colored using user provided  groups

Moreover one can specify the number of clusters or the level from which one wishes to start the tree.

> plot(mix4.hmac,n.cluster=2)

The level at which there are 2 clusters is 2
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HMAC Dendrogram

cl
us

te
rin

g 
le

ve
l

2

3

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

Alternatively one can use the hard.hmac or soft.hmac to visualize or extract the hard or soft clus-
tering of a speci�ed level or a user speci�ed number of cluster.

To get the hard and soft cluster plot, either the number of clusters or the clustering level needs to be
speci�ed.

> par(mfrow=c(1,2))

> hard.hmac(disc2d.hmac,n.cluster=2)

The level at which there are 2 clusters is 3

> soft.hmac(disc2d.hmac,level=3)

> par(mfrow=c(1,1))
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Hard clustering produced by HMAC 
 Colors represent different clusters

Level 3 with number of clusters 2

0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

V1

V
2

boundary points

Soft clustering produced by HMAC 
 Colors represent different clusters

With the plot=F option hard.hmac will return the membership of each obsearvation while soft.hmac
will return the posterior probability of each point and the boundary point as well.
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> member=hard.hmac(disc2d.hmac,n.cluster=2,plot=F)

The level at which there are 2 clusters is 3

> member

[1] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[38] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[75] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[112] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[149] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

[186] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[223] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[260] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[297] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[334] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

[371] 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

> member.soft=soft.hmac(disc2d.hmac,level=3,plot=F)

> head(member.soft$post.prob)

[,1] [,2]

[1,] 0.9999658 3.415439e-05

[2,] 0.9999233 7.670755e-05

[3,] 0.9997912 2.087752e-04

[4,] 0.9975377 2.462327e-03

[5,] 0.9996352 3.648461e-04

[6,] 0.9997089 2.911416e-04

For the convenience of application, users can also identify whole clusters of point by either clicking
the point on the graph or specifying the point as an input in the choose.cluster function. The
clicked/speci�ed point along with other points within the same cluster will be highlighted.

> choose.cluster(disc2d.hmac,n.cluster=2,x=c(0,0))

The level at which there are 2 clusters is 3

7



0 1 2 3 4 5

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

V1

V
2

In addition in this package, one can also visualize the contour plot with speci�ed number of clusters.

> contour.hmac(disc2d.hmac,n.cluster=2,col=gray(0.7))

The level at which there are 2 clusters is 3
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Contour plot
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3 Further Examples

In the previous section we demonstrated the use of the functions in this package using a two dimensional
data. Our method is neither restricted to two dimensions nor is it restricted to speci�c shapes of the
clusters. Here we provide more examples, some on real data and some on simulated data to demonstrate
other features of the functions available in this package.

First we focus on a two dimensional data obtained from high throughput genotyping from Illu-
mina technology named GOLDEN GATE. [ http://www.illumina.com/technology/goldengate_
genotyping_assay.ilmn] The data values are actual measurements made by the machine (intensity),
after these are normalized (background subtracted etc). The data set is used for making genotype calls
by Illumina. The data around X- and Y-axes represents the two homozygous genotypes (e.g. AA and
TT), while the cluster along the 45-degree line represents the heterozygous (e.g. AT) genotype. Due
to noisy reads, the data points often lie in-between the axes, and cluster detection is used for making
automatic genotype calls.

The scatter plot of the original data is shown below. The non-gaussian density shape and the
abundance of points neear the axis plays an important role in clustering these points and Modal Clustering
captures it very well.

> data(cta20)

> data(cta20.hmac)

> plot(cta20,pch=16)
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One can always apply a log transformation or some other more general transformations like Box Cox
or logicle, but they are not designed to make clustered data normal. In fact even after log transformation
the data are skewed and hence standard clustering algorithm failed to capture the true clustering whereas
the Modal Clustering method could capture the three clusters in the transformed scale too.

Here we provide the clustering of the data in transformed and untransformed scale

> data(logcta20.hmac)
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> par(mfrow=c(1,2))

> hard.hmac(cta20.hmac,n.cluster=3)

There are no levels with exactly 3 clusters

The level at which there are 4 clusters is 4

> hard.hmac(logcta20.hmac,n.cluster=3)

The level at which there are 3 clusters is 4

> par(mfrow=c(1,1))
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Hard clustering produced by HMAC 
 Colors represent different clusters

Level 4 with number of clusters 4
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 Colors represent different clusters

Level 4 with number of clusters 3

Now we demonstrate the output of the algorithm for a one dimensional example.

> data(oned.hmac)

> data(oned)

> par(mfrow=c(1,2))

> hist(oned,n=20,col="lavender")

> hard.hmac(oned.hmac,level=3)

> par(mfrow=c(1,1))
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Histogram of oned
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Finally we demonstrate the output of our algorithm for data with more than two dimensions The
iris data from R data�le has �ve dimensions. The last column is categorical variable so we use the �rst
four columns to extract the clusters in the data. The plot function will provide trees similar to two
dimensional examples, but now the hard.hmac provides the pairs plot of the pairwise dimensions.

> iris.hmac=phmac(iris[,-5],npart=1,parallel=F)

Performing initial Modal clustering..........

Building hierarchical Modal clusters at

level 1 ...level 2 ...level 3 ...level 4 ...level 5 ...

level 6 ...level 7 ...level 8 ...level 9 ...level 10 ...

> plot(iris.hmac,sep=.02)

HMAC Dendrogram
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> hard.hmac(iris.hmac,n.cluster=2)

The level at which there are 2 clusters is 3
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